

Agenda

- Introduction

- Samples / RichFLV

- The File API

- Registering File Types

- The Updater Class

- Working with Bytes

Some Samples
RichFLV

RichMp3

RichTube

File API

File API: The Possibilities

- Create And Delete Files/Directories

- Copy Files/Directories

- Move Files/Directories

- Get Information about Files and Directories

- Read and Write Files (binary/text)

File API: The Classes

- Package flash.filesystem.*

- Only 3 new classes do the Trick

- File (represents a file or directory)

- FileStream (methods for reading and writing to a file)

- FileMode (sets the mode in which a file is accessed)

The Class flash.filesystem.File

- The class File is a pointer to a file

- So how do we point to a file

- Keep in mind that filepaths are platform dependent!

The File class has two properties which define a path

- nativePath

- url

The Class flash.filesystem.File

var myFile:File=new File();
myFile.nativePath="C:\\Users\\Apollo\\Desktop\\DMB - 27 - 08-01-07.mp3";

var myFile:File=new File();
myFile.url="file:/C:/Users/Apollo/Desktop/DMB - 27 - 08-01-07.mp3";

Using nativePath

Using url

The Class flash.filesystem.File

- File.appStorageDirectory

- File.appResourceDirectory

- File.currentDirectory

- File.desktopDirectory

- File.documentsDirectory

- File.userDirectory

You Can use the resolve method to construct the path:

var file:File = File.desktopDirectory.resolve(„MyDirectory/file.txt“);

The File class has some static properties for system paths that
abstract the differences Between the different Operating Systems.

The Class flash.filesystem.File

- file file:///c:/test/myFile.txt

- app-resource app-resource:/test/myFile.txt

- app-storage app-storage:/test/myFile.txt

URL Schemes

The Class flash.filesystem.File

User defined paths

- browseForOpen(title:String, typeFilter:Array = null)

- browseForSave(title:String)

- browseForMultiple(title:String)

- browseForDirectory(title:String)

Example: User Defined Paths

The Class flash.filesystem.File

Retrieving information for files and directories

- creationData
- creator
- exists
- extension
- icon
- isDirectory
- modificationDate
- name
- parent
- size
- type
- url

The Class flash.filesystem.File

Retrieving information for about the file system

- File.encoding
- File.lineEnding
- File.seperator
- File.systemCharset

- Capabilities.os

Example: Information about a file

The Class flash.filesystem.File

Useful methods of the File API

createDirectory();
createTempDirectory();
listDirectory();
copyTo()
deleteDirectory()
moveToTrash()

createTempFile();
deleteFile();
copyTo();
moveTo()

Examples: File API Methods

FileStream

- package: flash.filesystem.*
- Lets you read and write to the file system
- Like ByteArray it implements IDataInput and IDataOutput

Example: Opening a file with read access

var file:myFile = File.desktopDirectory.resolve("myFile.txt");

var fileStream:FileStream = new FileStream();

fileStream.open(file, FileMode.READ);

FileMode

- Contains static constants that define the mode in which the file is opened

- You pass these constants to the open() or openAsync()
 methods of the filestream

Possible modes are:

- FileMode.READ read-only. File must already exist.
- FileMode.WRITE write-only. Overwrites existing files !
- FileMode.APPEND write-only. Data can be written at the end
- FileMode.UPDATE Data can be written everywere

Example: FileStream / FileMode

File API: Asynchronous/Synchronous methods

Synchronous

- blocks code execution until the file is completely read

- good for small files

- Easier to use / less code

Asychronous

- runs in the background without blocking code execution

- informs about the end of the read operation through events

- good for large files

File API: Asynchronous/Synchronous methods

Synchronous Asynchronous

File.copyTo() File.copyToAsync()
File.deleteDirectory() File.deleteDirectoryAsync()
File.deleteFile() File.deleteFileAsync()
File.listDirectory() File.listDirectoryAsync()
File.moveTo() File.moveToAsync()
File.moveToTrash() File.moveToTrashAsync()
FileStream.open() FileStream.openAsync()

Example: Sync/Async methods

Registering File Types

<fileTypes>
<fileType>

<name>adobe.VideoFile</name>
<extension>avf</extension>
<description>Adobe Video File</description>
<contentType>application/vnd.adobe.video-file</contentType>

</fileType>
</fileTypes>

Example: File Serialization

Example: Putting it all together

The Updater class

var updater:Updater = new Updater();

Updater.update(file:File, version:String);

- It`s your responsibility to check for updates

- It`s your responsibility to download the new .air file

Usual Update Scenario

Open Application Descriptor File and get version information

Load XML from Server and extract version information

Load new AIR file from Server / Save it to user harddisk

Update the Application with the downloaded file and the Updater Class

AIR Remote Updater

- Developed by Claus Wahlers

- http://codeazur.com.br/lab/airremoteupdater/

- Simplifies version checking

- No XML with version information needed

- Extracts AIR (zip) and reads version info

- Uses Fzip (also developed by Claus http://codeazur.com.br/lab/fzip/)

http://codeazur.com.br/lab/airremoteupdater/

Example: Updating AIR Apps

Working With
Bits And Bytes

Binary Data: Motivation

- Add new functionality independent of Flash Player releases

- All file formats have something in common. They are made out of Bits

- Implement any file format

- The only problem: Will you be able to show/play it?

Binary Data: Basics

- Smallest information unit in a computer is a bit

- A bit can be 0 or 1

- Bits are often grouped together as Bytes (8 bits)

- Grouped bits are also called a “word”

Binary Data: Basics

- Counting with bits:

1 0000 0000
2 0000 0001
3 0000 0010
4 0000 0011
5 0000 0100
6 0000 0101
7 0000 0111
…
255 1111 1111

Binary Data: Basics

http://woodgears.ca/marbleadd/

Binary Data: Basics

- Bit lengths of DataTypes in Actionscript

Number 8 Bytes
int 4 Bytes
uint 4 Bytes
String variable (1 byte / char)

Binary Data: The Byte Array Class

- Available since Flash Player 9

- AIR adds two new methods: deflate() and inflate() for compression

- It`s an array - so you can access bytes like this: myByteArray[index]

- If you read from a ByteArray the position attribute will be incremented

byteArray.position=0;

byteArray.readInt();

trace(byteArray.position) // outputs 32

Binary Data: The Byte Array Class

Methods for reading and writing bytes/special data formats:

readByte() – reads 8 Bits

readInt() - reads a 32 bit integer

readShort() – reads a 16 bit integer

readUTF() – reads a UTF string of variable length

and many more…

Binary Data: Operators – Bitwise AND

Bitwise AND

- Sign is & (compare logical AND &&)
- useful for analyzing packed words
- used to extract and test bits
- Rule: everything times zero is zero.
- Same as multiplication in the decimal world. 0 AND 0 = 0

-
0 AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1

You see that only if both Bits are set the result will be a set Bit.

Binary Data: Operators – Bitwise AND

Bit Testing

- Create a mask with just the bits set that you want to test
- If the bits are set the result of the AND operation should be the same as the mask

Example:
Testing if the second least significant bit is set

Binary Data: Operators – Bitwise AND

- Another useful scenario for using the bitwise AND is the so-called bit clearing.
- For any position in the bit array which you want to preserve you use 1
- and for any bit to clear you use 0 in your mask.

Bit Clearing

Binary Data: Left Shift (<<)

- (bit array) << (number of shifts)
- Shifts the bits to the left by the number of bits indicated by y.
- On the right site the bits are filled with zeros.
- On the left side they are simply cut off.

Example:

1111 1111 << 3 = 1111 1000

Binary Data: Right Shift (>>)

- Works like Left Shift operator but shifts the bits to the right.
- Bits on the left are filled with 0`s.
- Bits on the right are cut off.

Example:
1111 1111 >> 3 = 0001 1111

Bits And Bytes Example

- Analyzing mp3 frames
- Cut mp3 files at frames

Mp3 File Format

What do we need to know if we want to cut an mp3 file?

- Something about the anatomy of the file

- The structure of the file

- Its specification

http://mediasrv.ns.ac.yu/extra/fileformat/modules/mp3/mpeghdr.htm#MPEGTAG

Mp3 File Format Structure

- Mp3 consists of independent frames

- A Mp3 Frame consists of a Header and the actual Data

Mp3 File Format

- Mp3 consists of independent frames

- A Mp3 Frame consists of a Header and the actual Data

We can only cut Mp3 files
between frames!

Mp3 File Format

So What Do We Need To Know About A Frame?

Bitposition ?Timestamp ?

Frame Size ?Frame Duration?

Mp3 Header

A: Sync Word

B: MPEG audio version (MPEG-1, 2, etc.)

C: MPEG layer (Layer I, II, III, etc.)

D: Protection (if on, then checksum follows header)

E: Bitrate index (lookup)

F: Sampling rate frequency (44.1kHz, etc., determined by lookup table)

Mp3 Header

G: Padding bit (on or off, compensates for unfilled frames)

H: Private bit (on or off, allows for application-specific triggers)

I: Channel mode (stereo, joint stereo, dual channel, single channel)

J: Mode extension (used only with joint stereo, to conjoin channel data)

K: Copyright (on or off)

L: Original (off if copy of original, on if original)

M: Emphasis (respects emphasis bit in the original recording; now largely obsolete)

Finding Mp3 frames

public function getNextFrame():Boolean
{

while (file.bytesAvailable > 4) {
var ch:int = file.readByte() & 0xff;
if (ch != 0xff) {

continue;
}
if ((file.readByte() & 0xe0) == 0xe0) {

var filePos:int=file.position;
file.position=filePos - 2;
return true;

}
}

return false;
}

Finding Mp3 frames

public function getNextFrame():Boolean
{

while (file.bytesAvailable > 4) {
var ch:int = file.readByte() & 0xff;
if (ch != 0xff) {

continue;
}
if ((file.readByte() & 0xe0) == 0xe0) {

var filePos:int=file.position;
file.position=filePos - 2;
return true;

}
}

return false;
}

Extracting the MPEG Audio ID

We want those Bits!

Extracting the MPEG Audio ID

Extracting the MPEG Audio ID

Extracting the MPEG Audio ID

The Next Steps – Grab some specifications!

http://www.adobe.com/licensing/developer/

Resources

Byte Arrays
-http://www.bytearray.org
-http://www.richapps.de ;-)
-http://www.easycalculation.com/binary-converter.php

File API
-http://labs.adobe.com/wiki/index.php/AIR:Articles:Apollo_Local_File_System
-http://www.trajiklyhip.com/blog/index.cfm/2007/8/12/Working-With-the-File-System-API-in-AIR
-http://blog.kevinhoyt.org/2007/03/19/apollo-file-api-overview/

MP3 Format
-http://mediasrv.ns.ac.yu/extra/fileformat/modules/mp3/mpeghdr.htm#MPEGTAG

FLV
-http://www.adobe.com/licensing/developer/ (SWF & FLV Specification)

http://www.richapps.de/
http://labs.adobe.com/wiki/index.php/AIR:Articles:Apollo_Local_File_System
http://www.trajiklyhip.com/blog/index.cfm/2007/8/12/Working-With-the-File-System-API-in-AIR
http://mediasrv.ns.ac.yu/extra/fileformat/modules/mp3/mpeghdr.htm
http://www.adobe.com/licensing/developer/

Thanks for listening!

Questions & Comments: benz@richapps.de

